
Figure 5) Degree of bias (%) in deterministic mean EP 
prediction vs. probabilistic outcomes
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Figure 4) EP stabilization in probabilistic analysis (SE=5% of 
mean)
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Figure 3) EP stabilization in probabilistic analysis (SE=1% of 
mean)
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Figure 2) EP stabilization in deterministic analysis
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Figure 1) Mean ICER (based on LE) stabilization over 10,000 bootstrap iterations with tolerance levels from 1%, 3% and 5% 
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Table 1) Patient characteristics

(M+S)

Current age

Gender

Ethnicity

Duration since diagnosis of T2DM 

(years)

% HbA1c

Total cholesterol (mg/dl)*

LDL cholesterol (mg/dl)*

HDL cholesterol (mg/dl)*

Systolic blood pressure (mmHg)

BMI (kg/m2)

Baseline complication history

55

Male

White

5

7.49

200

100

47

265

133.6

30

0%

(M+D) (BI)

0.473

0.198

0.046

2.059

1.482

0.482

3

0.692

0.194

0%

2.25

0.25

0.375

10

5

2.35

13.25

12.65

1.5

0%
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Conclusions
The consideration of parameter sampling in standard BCA does 
not add additional RTR if economic parameters such as costs and 
utilities are omitted from sampling. 

EP stabilization appears to be not in�uenced by the degree of 
parameter sampling (size of con�dence ranges in which parame-
ters are sampled). 

In contrast, failure to accommodate patient heterogeneity and 
associated nonlinear e�ects within the modeling can signi�cant-
ly bias predicted morbidity, morality and cost e�ectiveness �nd-
ings. 

When treatment decision rules are dependent on heteroge-
neous patient attributes, probabilistic sampling of associated 
parameters should be routinely undertaken in standard BCA.

Results
Stabilization of absolute EP including LE, QALE, total lifetime costs 
and complication incidence occurred with replications <1000 in 
both, SMP and DET analyses. 

RTR to reach stabilized incremental results were considerably great-
er with ICERs (per LE or per QALE) consistently exposing the lowest 
stabilization characteristics in both, deterministic and probabilistic 
analyses (Figures 2 to 4). 

In deterministic analysis 6020, 4770, 2300, 1750 and 1500 replica-
tions were required to reach stabilization for tolerance intervals 
ranging from 1% to 5%, respectively (Figure 2). 

Probabilistic analyses exposed considerably greater RTR if econom-
ic parameters (utilities and costs) were subjected to sampling and 
the number of bootstrap iterations required to reach stabilization 
determined by the largest tolerance interval of 5% surrounding EV  
was > 7,000 (Figures 3 and 4). 

In probabilistic analyses where the sampling of economic parame-
ters was omitted, RTR were comparable to those achieved in deter-
ministic analysis with 8400, 3750, 1650, 1217 and 1156 replications 
required to reach stabilization for tolerance intervals ranging from 
1% to 5% using 1% SE (Figure 3) and 6954, 3475, 1522, 1074 and 
1034 replications required using 5% SE (Figure 4). 

The % degree of bias in deterministic mean EP prediction vs. proba-
bilistic outcomes (assumed to correspond to EV) at maximum run 
time of 10,000 bootstrap iterations are presented in Figure 5.

Methods
This study used the IMS Core Diabetes Model (CDM) (1-3), a validat-
ed and established diabetes model, to compare the EP stabilization 
patterns of analyses with and without parameter sampling. 

Model projections were obtained evaluating the cost e�ectiveness 
of two hypothetical interventions for patients with characteristics as 
presented in Table 1 and di�erences in clinical e�ectiveness of 0.5% 
HbA1c in favor of the treatment- vs. control arm.

In order to understand the degree by which input parameter vari-
ability distorts EP stabilization, model projections were run in three 
ways:

A) Deterministic:  no parameter sampling applied
B) Low degree of sampling (L_SMP): parameters sampling   
     with standard error (SE) ~1% of mean 
C) High degree of sampling (H_SMP): parameters were   
     sampled with SE ~5% of mean 

Further, sampling analyses were conducted in two alternative ways:

1st to include all possible sources of uncertainty
  (i.e. patient baseline characteristics, treatment e�ects, 
  probabilities, costs and utilities) 
2nd to omit sampling of economic parameters (costs and 
  utilities) since their contribution to constitute patient 
  heterogeneity and nonlinear e�ects is limited. 

All costs, life expectancy (LE) and quality adjusted life expectancy 
(QALE) were projected over a life time horizon (50 years) in 
non-parametric bootstrap simulations with 1000 included patients 
repetitively run through a maximum of 10,000 bootstrap iterations. 

Costs (US$) and bene�ts were discounted at 3.0%.

RTR were assessed in terms of bootstrap replications required to 
reach stabilization of absolute and incremental EPs. 

Stabilization was de�ned as point estimates remaining within the 
interval of expected value (EV) +/- tolerance (%); tolerance was ex-
plored in a range of 0.1% to 5% surrounding EV (Figure 1). EV was as-
sumed to be equal to the EP outcome at 10,000 iterations. 

Last, to evaluate the impact on non-incorporation of patient hetero-
geneity and related non-linear e�ects, we assessed the % degree of 
bias in deterministic mean EP prediction vs. EV. The latter was as-
sumed to correspond to mean probabilistic outcome at maximum 
run time (10,000 bootstrap iterations). 

Objectives
The objective of our investigation was to explore the extent to which 
parameter sampling distorts endpoint stabilization in stochastic 
modeling approaches. 

We further aimed to assess the degree of mean EP prediction failure 
in non sampled (deterministic) analyses (where patient heterogene-
ity and nonlinear e�ects are not considered) versus sampled  (proba-
bilistic) analyses.

Introduction
The predominant rationale for parameter sampling in decision analytic 
modeling is to assess parameter uncertainty, i.e. to determine the un-
certainty of the modeling outcomes given the uncertainty of the input 
parameters. This is commonly evaluated in the context of probabilistic 
sensitivity analysis (PSA). 

It is less conclusive if parameters should be sampled in standard base 
case analysis (BCA) where the intention is to achieve mean end point 
(EP) predictions close enough to expected value (EV).  The justi�cation 
for sampling in BCA is to capture patient heterogeneity but also ac-
count for nonlinear e�ects (systematic deviation of mean EP predic-
tions in sampled vs. non sampled projections induced by the nonlinear 
model characteristics). 

However recent HTA recommendations suggested conducting BCA 
without parameter sampling for the reason that EP stabilization may be 
negatively in�uenced and  correspondingly run time requirements 
(RTR) increased. 

In stochastic modeling approaches that utilize Monte Carlo techniques 
the random variability of outcomes (Monte Carlo Error) can be reduced 
through run time increases (increase of patient number processed 
through the modeling).
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