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Objective
• In HEOR the role of probabilistic sensitivity analysis (PSA) is to assess the uncertainty 

of model predictions with respect to the underlying parameter uncertainty. 
• However, in Monte Carlo simulation parameter uncertainty coincides with and cannot 

be distinguished from random noise (Monte Carlo error (MCE)). 
• The minimum criteria for PSA should be therefore to reduce MCE to such an extent that 

a meaningful assessment of  parameter uncertainty is possible. 
• The objective of this study was to quantify the minimum run time requirements to 

reduce MCE to acceptable levels and to present a feasible approach to distinguish 
the remaining degree of MCE from outcome variability attributable to parameter 
uncertainty. 

Conclusions
• Run time requirements to reduce Monte Carlo error are lower whenever the uncertainty 

of included parameters is increased. 
• For the selected degrees of parameter input variability 10,000 patients (based on SD) 

and 50,000 patients (based on SE) simulated in 1,000 bootstrap iterations were found 
to be suf� cient to reduce MCE to the degree that allows meaningful assessment of 
parameter uncertainty. 

• For this run time, less than 15 % of the presented output variability is attributable to 
random noise and the remaining 85  % represent parameter uncertainty. 

• This analysis demonstrated a feasible approach to precisely estimate the degree of 
parameter uncertainty in stochastic simulations. 

Methods
• A established and validated computer simulation model, the IMS CORE Diabetes Model 

(CDM)1, was used to compare outcome variability of bootstrap simulations, each 
performed with 1,000 iterations, but with varying numbers of generated patients 
ranging from 500 to 100,000. 

• Model projections were performed evaluating the cost effectiveness of two hypothetical 
interventions with a difference in glycohemoglobin (HbA1c) of 0.5 % - points and 
a difference in body weight of 2 Kg.

• Each simulation was performed in three ways: 
I.  No parameter sampling
II.   Parameters were sampled around 5 % of mean values (intending to represent   
        variability for standard error (SE) input)
III. Parameters were sampled around 25 % of mean values (intending to represent   
        variability for standard deviation (SD) input)

• The degree of Monte Carlo error was determined according to the relationship of 
the con� dence sizes of the non sampling analyses versus sampled analyses (Figure 1). 

• In the modeling analyses, minimum run time requirements were considered 
to be reached when the ICER (per QALE) con� dence ranges of non sampling analysis 
(representing stochastic uncertainty) decreased steadily and consistently 
below 50 % of con� dence size obtained in PSA (representing both stochastic and 
parameter uncertainty).

• Upon ful� llment of this criteria, the degree of MCE still contained in the con� dence 
ranges (including both, stochastic- and parameter uncertainty) was estimated 
from ratings obtained from an theoretical exercise that was conducted in MS Excel 
(Figure 4) (attempting to replicate the conditions in PSA).

• The theoretical exercise compared the variability of 10,000 samples from two random 
distributions A and B to the variability of the joint distribution (A+ B).
→ Distribution A with static mean of 50 and SD of 5 
           (representing parameter uncertainty) 
→ Distribution B with static mean of 0 and decreasing SD from 10 to 0 
           (representing decreasing level of stochastic uncertainty). 
→ Joint distribution = distribution A +  distribution B

Results
• ICER con� dence ranges in non PSA runs demonstrated an irregular pattern 

(increased or maintained stable) with increasing patient number until 10,000 patients 
were included (Figure 2).

•  The 50 % threshold criteria (ICER con� dence size from non PSA < = 50 % of PSA 
con� dence size) was reached at 10,000 and 50,000 included patients for SD and SE 
based PSA, respectively (Figure 3).

• For these patient numbers, 36.6 % and 45.0 % of overall outcome variability were found 
to be attributable to stochastic uncertainty (MCE) for SD and SE based PSA. 

• The theoretical exercise demonstrated that when stochastic variability decreased 
below 50 % of overall (joint) variability, 85  % of overall variability was attributable to 
parameter uncertainty (Figure 4). 

• More precise estimates were obtained from a functional relationship found 
between the percentage of parameter- and stochastic uncertainty from overall (joint) 
outcome variability (Figure 5). 

• This relationship demonstrated that for SD based PSA with 10,000 included patients 
(where 36.6 % of joint variability were due to random noise) 93.3 % of the observed 
con� dence size was attributable to parameter uncertainty. 

• The corresponding percentage for SE based PSA with 50,000 included patients 
(where 36.6 % of joint variability were due to random noise) was measured 
as 88.9 % (Figure 5).

Figure 1. Relationship of con� dence sizes of non parameter sampling – vs. sampling       
      analyses in deterministic and stochastic models 
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Figure 2. ICER con� dence ranges across included patients

Figure 3. % MCE contained in PSA con� dence ranges (ICER)

Figure 4. Relationship of two overlaying distributions (due to random noise and  
                   parameter uncertainty) to the joint distribution

Figure 5. Functional relationship found between the percentage of parameter- and                      
                   stochastic uncertainty from overall (joint) outcome variability 
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