Introduction

In health economic evaluation, negative effects of hypoglycemia on patients' well-being and health-related quality of life (HRQoL) are commonly incorporated through a disutility assumption that describes the annual decline in quality adjusted life expectancy (QALE) that is associated with the occurrence of one hypoglycemic event.

Most commonly, a static approach is applied that assumes the same (static) reduction of QALY for each hypoglycemic event that occurs throughout one year.

Two independent studies (1, 2) have recently demonstrated that the health utility gain associated with the per-event avoidance of a non-severe hypoglycemia episode (NSHE) varies according the annual baseline rate of NSHE following the perception that QALE decline is worst for the first event but declines with each subsequent event occurring throughout one year.

Both studies have evaluated non-linear equations to evaluate the overall annual disutility as a function of annual event frequency for daytime and nocturnal NSHE. A comparison of overall marginal (single event) disutility as a function of annual NSHE frequency following both approaches is presented in Figure 1.

Similarities in the pattern of marginal declining utility for increasing event frequency and the fact that both studies were conducted independently and based on different data sets support the claim that the observed trend reflects clinical practice.

Despite this many health technology assessments recommend using a mean (static) per-event health disutility.

Objectives

The objective of this study is to quantify the bias introduced into an economic evaluation when using an average (static) disutility compared to a baseline event rate adjusted (diminishing) disutility.

Methods

This study used the IRS Core Diabetes Model (CDM) (3-5), a validated and established diabetes model, to compare the static versus non-linear (diminishing) approach to evaluate NSHE disutility for increasing annual event rates of 1, 5, 10 and 20 events per year.

Health utility impact following hypoglycemia was assessed using the below approaches:

D1 - Non linear approach following log transformed regression equations to evaluate the disutility associated with daytime (diurnal) and nocturnal NSHE derived from time-trade-off (TTO) data reported by 2,828 individuals from Canada, Germany, Sweden, UK and USA (1).

D2 - Non-linear approach following multivariate regression to evaluate the disutility associated with daytime and nocturnal NSHE derived from two postal surveys (1,305 responses) among subjects form the UK (2).

S3 - Static approach assuming a constant utility decline of 0.0052 per NSHE (6).

Utility differences as evaluated by the alternative approaches were assessed for the following scenarios:

A) The overall one year decline in health utility following annual daytime NSHE rates of 1, 5, 10 and 20 events per year.

B) The incremental utility gain for one daytime NSHE avoided following annual daytime NSHE rates of 1, 5, 10 and 20 events per year.

C) The annual utility gain following a 50% reduction of daytime NSHE for rates of 1, 5, 10 and 20 events per year.

D) The 10 year decline in health utility for increasing annual event rates of 1, 5, 10 and 20 events per year.

Results

The two approaches assuming diminishing marginal disutility were associated with an overall one year decline in health utility of 0.014, 0.024, 0.031 and 0.059 (D1) and 0.009, 0.022, 0.036 and 0.058 (D2) for annual event rates of 1, 5, 10 and 20 events per year.

This compared to a one year utility decline of 0.005, 0.026, 0.019 and 0.104 using the static approach (S3) (Figure 2).

Incremental utility gain for 1 NSHE avoided per year was 0.014, 0.002, 0.001 and 0.001 (D1), 0.009, 0.002, 0.001 and 0.001 (D2) and 0.005, 0.006, 0.005 and 0.005 (S3) for annual event rates of 1, 5, 10 and 20 events per year (Figure 3).

Assuming a 50% reduction in annual NSHE rate for the comparison intervention was associated with a utility gain of 0.007, 0.005, 0.004 and 0.006 (D1), 0.004, 0.007, 0.008 and 0.008 (D2) and 0.003, 0.013, 0.026 and 0.052 (S3) for the compared annual event rates (Figure 4).

Finally, the 10 year decline in health utility for increasing annual daytime and nocturnal NSHE rates from 1 to 20 events per year is presented in Figure 5.

Conclusions

Both non-linear approaches assuming diminishing marginal disutility presented comparable findings.

Non-linear models produced higher overall and incremental utility scores for NSHE/year and considerably lower scores for ≥5 NSHE/year.

Failure to account for the effects of diminishing marginal disutility may introduce bias when estimating the value of diabetes management strategies that minimize hypoglycemia risk.

References


For further information: Please contact Phil McIwan (phil.mciwan@heer.co.uk) or Volker Foss (volker.foss@imshealth.com)


©2014 IMS Health Incorporated and its affiliates. All rights reserved. Trademarks are registered in the United States and in various other countries.